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ABSTRACT 

Mesh generation for finite element analysis is far from a solved problem.  Although several automatic meshing algorithms exist, 

other difficulties of setting up a problem for finite element analysis still make this an interactive process.  Undaunted, we 

continue to perform research on, and therefore publish, papers describing their work to overcome these problems.  In our efforts 

to describe our work “in the best possible light”, we often obscure the real technical issues in these publications, rather than 

honestly assessing both the pros and cons of the described approach.  This is an especially fruitful endeavor when reporting on 

mesh generation, given the 3D nature of the problem and the natural tendency of layman to avoid understanding the details of this 

problem.  This paper describes twelve tried-and-true methods for obscuring rather than elucidating the performance of mesh 

generation technology. 
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1 INTRODUCTION 

Mesh generation for finite element analysis is far from a 

solved problem.  Even when fully automatic algorithms exist, 

as in tetrahedral meshing, the other parts of the process are 

sufficiently difficult that a great deal of user interaction is 

still necessary.  Undaunted, we continue to work on, and 

therefore publish, new approaches to the mesh generation 

problem.  In our efforts to describe our meshing technology 

“in the best possible light” compared to other approaches, we 

often make an algorithm look better than it really is.  Given 

the 3D nature of the meshing problem, it can be difficult to 

tell whether a method will really be as effective as is implied 



in a publication.  Since users tend to avoid understanding the 

details of the underlying methods, they often can’t tell from 

the publication either.   

This illustrates some techniques used to describe, or not 

describe, mesh generation performance.  While its primary 

purpose is to focus attention on the ways in which 

performance can be overstated, it also gives tips for fully 

describing both benefits and shortcomings of meshing 

algorithms.  I hope that this will improve the information 

exchange in the meshing community, and move us toward 

better solutions more quickly. 

2 TWELVE WAYS 

Twelve items are listed below which often serve to obscure 

the real performance of meshing algorithms or techniques.  

An attempt is made to describe both ways in which each item 

is used to obscure performance, and then ways in which the 

item can be used to further the understanding of the given 

technology.  Some of these methods apply only to specific 

types of mesh generation, e.g. all-hexahedral meshing, while 

others are more generic.  The more generic and widely 

applicable items are listed first. 

2.1 Generate a large mesh where a small 

one will do 

There are few things more effective at distracting from the 

real technical issues behind a meshing method than 

generating a really, really big mesh.  Small details in the 

geometric model should be removed so they don’t make 

generating this mesh too difficult.  If questions arise about 

which analysis application the mesh is being prepared for, or 

why fine geometric details are not resolved by such a fine 

mesh, make a vague reference to Moore’s Law and answer 

condescendingly that applications always need larger and 

larger models.  This technique is especially helpful for 

reporting on parallel mesh generation, since it distracts from 

issues like parallel performance, parallel IO, and parallel 

partitioning. 

Parallel computing applied to analysis codes does introduce a 

need for ever-larger meshes.  Beyond a certain point, though, 

the reduction in discretization error due to finer mesh 

resolution is wasted because of the lack of fidelity to the 

original geometric model. 

2.2 Simplify meshing at the cost of analysis  

There are two ways to reduce the relative time to mesh 

compared to the overall analysis time: reduce the actual 

meshing time, or increase the overall analysis time.  Since 

people pay attention to interactive meshing time, and because 

computers are always getting faster anyway (see previous 

item), one need only concentrate on minimizing the actual 

meshing time.  Even if this comes at the cost of increased 

overall time to analysis, at least it’s no longer meshing’s 

fault. 

There are several examples for which this approach has been 

particularly effective.  One example is so-called “THEX” 

meshes, where all-hexahedral meshes are generated by 

splitting tetrahedra into hexahedra using mid-point 

subdivision.  Although it may be necessary to generate your 

own analysis results (because few analysts choose in practice 

to use meshes like these), this is balanced by being able to 

show pictures of very complicated all-hexahedral meshes 

generated with this technique.  Inside-out hexahedral 

meshing schemes have also used this approach effectively.  

For these methods, fine Cartesian mesh is used on the interior 

and the exterior is fitted to the boundary, or resolves the 

boundary in a stair-step fashion.  Of course, the finer the 

Cartesian mesh, the better the resolution of the boundary (and 

the more impressive the pictures).  Those concerned about 

analysis time for these problems should reread item 1. 

Probably the most effective application of this item is the use 

of quadratic tetrahedral meshes.  Attention has been focused 

almost exclusively on time to mesh, eliminating any 

questions about the analysis time of these meshes compared 

to that of hexahedral meshes with similar analysis accuracy. 

This argument has also benefited from the widespread belief 

that automatic all-hexahedral meshing is impossible, while 



all-tetrahedral meshing has been a solved problem since the 

1980’s.   

2.3 Quote time to mesh without accounting 

for related work 

When comparing meshing approaches, it is best to compare 

the weaknesses of other approaches with the strengths of 

yours.  Since the focus is on reducing the time to mesh 

measured using the other approach, one need only compare 

times for tasks included in the other approach.  For example, 

using STL files as input to your mesh generator eliminates 

the problem of CAD translation; since the original approach 

has no issue with assigning boundary conditions, one need 

not include that time in the comparison.  Another good 

example is the use of overset grids, where clearly it is easier 

to resolve specific details of the geometry.  The interactive 

effort to choose overset regions and insert them into the 

background mesh should be de-emphasized; users of other 

approaches will be unfamiliar with this process anyway, so 

they probably won’t notice.  This strategy has also been 

effective at describing multi block-structured meshing, 

grafting, and mesh cutting. 

2.4 Use examples which appear more 

complicated than they are 

Because quantifying the effort required to hex-mesh a given 

model a-priori is extremely difficult[4], we rely on qualitative 

visual assessment of meshing complexity, both before and 

after the generation of a mesh.  It has been said that a picture 

is worth a thousand words; however, people forget to say that 

pictures are worth plus or minus 1000 words.  That is, a well-

chosen picture can eliminate discussion which would 

otherwise occur about the details of a given meshing 

approach.  To this end, a part should be made to appear more 

complicated than it really is.  Two proven methods to 

accomplish this are the addition of extraneous features which 

are actually handled automatically, and showing models 

meshed with decompositions which are not highlighted.  For 

example, in Figure 1, drawing the model with all regions the 

same color (left) makes the model appear more complicated 

than when meshed regions are highlighted separately (right).  

Another favorite technique is to describe an algorithm using 

the most complex models handled successfully by the 

algorithm, implying that they represent typical performance.   

Since there are no standard test suites for meshing difficulty, 

there are no options for benchmarking performance anyway. 

2.5 Obscure important details about the 

model 

Simplifying assumptions are often necessary to complete 

difficult meshing problems.  However, because users tend to 

prefer not to know the details about a given meshing 

approach, one need not volunteer all the nitty gritty details 

when offering new meshing approaches as solutions.  Some 

common details that are sometimes mentioned which should 

not be include: 

Non-conforming interfaces: Although many analysis codes 

and users would like to have mesh which is compatible 

across adjoining regions, achieving this compatibility often 

makes mesh generation much more difficult.  Furthermore, it 

is difficult to notice incompatibility in 3D views of meshes 

anyway.  Of course, if any questions arise about this issue, 

one could think of it as an analysis code’s problem anyway. 

 

Figure 1: Model shown with all regions the 
same color (left) or not (right). 



Non-boundary-fitted mesh: Some of the greatest difficulties 

in meshing are caused by fine details on part boundaries.  

Generating meshes for these parts is greatly simplified if 

these details are not resolved.  Since by definition these 

details are difficult to see, it will be hard to notice their 

absence in published pictures of meshes resulting from this 

approach.  If analysts complain about not being able to 

resolve small details on the boundary, one can always offer to 

use h-refinement to improve the resolution locally.  Whether 

the targeted analysis code supports h-refined meshes or not is 

an analysis issue, and is therefore not relevant to a discussion 

about mesh generation. 

2.6 Describe 2D algorithm assuming easy 

extension to 3D 

Working in two dimensions is always easier than working in 

three dimensions, and is also far simpler to describe to others.   

If working on surface-based meshing, it is also useful to 

assume that a surface parameterization will always be 

available, obviating the need to ever consider the 3D aspects 

of a problem.  Since referencing other work is an important 

part of research publications, it can also be helpful to 

reference numerical analysis work, where the dimension 

often appears as a parameter in equation formulations.  

Working in two dimensions also makes implementation far 

easier, since there is no need for handling complicated 

geometry.  If one can get by with planar surfaces always 

bounded by linear or quadratic curves, all the better.  Of 

course, when using this approach, one should always mention 

plans to extend the work to 3D, and where possible even 

show pictures of 3D models for which the technique should 

work. 

2.7 Describe “automatic” algorithm which 

uses arbitrary tunable parameters  

The use of tunable parameters is a common technique used 

across computational simulation.  It is amazing the level of 

agreement one can get with experiment by adjusting a few 

parameters[8].  When applied to physical models, e.g. 

material properties, it is sometimes easy to tell when 

parameter values do not reflect reality.  Parameters used in 

meshing algorithms often have no physical interpretation, or 

an interpretation which requires knowledge which most 

readers have no desire to obtain.  Also, since there are no 

standard test suites for mesh generation, one need not worry 

about benchmarking with a common set of parameters.  To be 

most effective, users of this technique should make an effort 

to use parameters which look like they have a physical 

interpretation, but one for which it is difficult to tell whether 

a particular value is plausible or not.  As with item #4, it 

helps to find models as complicated as possible to 

demonstrate algorithms which use this technique. 

2.8 Quote time to mesh, leaving out 

important details 

For lack of an a-priori quantitative measure of difficulty, 

time-to-mesh is often used when assessing mesh generation 

capability.  However, even such a simple metric as time can 

be used to obscure real results.  For example, there is no 

better way to decrease the time to mesh a difficult problem 

than by assigning your best person to the job, while implying 

that they represent “average” performance.  Another effective 

technique is to report results for problems which are 

remarkably similar to ones solved in the past.  However, by 

far the most ingenious technique we have observed is to 

quote the time to mesh an important model in days, failing to 

mention that deadlines forced those doing the meshing to 

work twelve hours per day.  For really difficult models, one 

can use months, without mentioning all the Saturdays and 

Sundays spent in the office. 

2.9 Mesh single-region models 

Most meshing approaches are developed using single-part 

examples, since working with assemblies is, in general, more 

difficult.  The added details introduced by assemblies are 

difficult to show in publications anyway, given the inherent 

3D nature of these problems, and therefore aren’t worth the 

effort.  One could even argue that assembly models differ 

only in coupling on the boundary, and therefore are more a 

boundary condition (and therefore an analysis problem) 

anyway.  Instead of using assembly models to demonstrate 



the superiority of a given algorithm, it is far easier to add 

extraneous details to make the results look better (see Item 

#4).  Note that one should not make reference to item #1 

when using this technique, since that may imply that added 

computational power would otherwise enable analysis of 

assembly models. 

2.10 Use an approach which works by itself 

but breaks other parts of the process  

As discussed in item #2, people focus mostly on time to 

mesh, without regard to how a given technique affects other 

parts of the analysis process.  Therefore, we should not feel 

constrained only to methods which fit into current analysis 

practice.  In some cases, novel approaches are far easier to 

make work, can be made to appear to solve the problem, even 

though they are not supported by current analysis codes.  The 

best example of this in practice is the generation of hex-

dominant meshes (with the remainder of the mesh composed 

of pyramids and tetrahedra).  Because of the robustness of 

tetrahedral meshing in general, it is relatively easy to “close” 

such meshes.  We have observed that including tables 

reporting the relative number of each element gives the 

impression that these data are important, and does not 

indicate very clearly the relative volume of the part filled by 

each element (which might not look so favorable).  When 

available, pictures showing analysis results on these meshes 

are quire useful; unfortunately, since these meshes are not 

generally supported by analysis codes, these pictures may not 

be available.  In their stead, showing shaded pictures of 

“shrunken” elements, with each element type shown in a 

different color, can be impressive. 

Other meshing techniques which can use this approach 

include Chimera/overset grids and non-conforming h-adapted 

meshes.  In these cases, it is often easier to find analysis 

codes to compute on these meshes, since those codes are 

often developed by the same groups promoting those 

meshing approaches.  In fact, this may be a good lesson for 

those developing mixed-element meshing techniques. 

2.11 Report a single quality metric (or none), 

where several should be used 

Some researchers have complained about there being too 

many different metrics for reporting mesh quality.  However, 

I say if life hands you lemons, you should make lemonade; 

the more quality metrics one has to choose from, the easier it 

is to find one which reports favorable results for your meshes.  

Also, in this situation, it is easy to justify the addition of yet 

another metric, which can be designed with that goal in mind.  

Because of the diverse background of researchers in this 

field, it is also sometimes helpful to describe the new quality 

metric using lots of complicated mathematical equations; 

most mesh generation researchers don’t or won’t take the 

time to understand these formulations anyway. 

A related issue is how to show mesh quality.  One useful 

technique is to use shaded images of the mesh, with the color 

determined by quality metric.  This is useful for two reasons: 

first, it is likely the smaller elements which will have poor 

quality, but these will also be difficult to see because of their 

size; and second, when working with 3D models, poor-

quality elements often occur on the interior anyway, or at 

least can be hidden by judicious choice of viewing angle for 

the picture. 

2.12 Show surface mesh but not interior 

Everybody knows that a surface mesh is likely to have better 

quality than the interior (see item #6).  It is also extremely 

difficult to assess interior mesh quality visually.  Therefore, 

pictures of 3D models should always be shown in shaded 

mode, preferably from a camera position that shows the most 

complicated model having the best-quality mesh.  In certain 

cases, it can also be helpful to show carefully-chosen interior 

features of the 3D mesh, for example of vehicle occupants in 

automotive interior CFD analysis. 

3 BUT SEROUSLY… 

If you’ve gotten to this point in the paper, you may realize 

that the last section was written facetiously; that is, I’m not 

really recommending you use the practices described there.  

However, in our zeal to promote the latest and greatest 



meshing technology, we sometimes fail to clearly state the 

limitations in as complete detail as the capabilities of our 

work.  In other cases, it may be very application-dependent 

which approach will work better, or other issues arise which 

make it less clear whether there is a “right” answer.  At any 

rate, the following sections discuss some of the issues which 

arise for each of the items.  

3.1 Generate a large mesh where a small 

one will do 

Parallel computing applied to analysis codes only increases 

the demand for ever-larger meshes.  Beyond a certain point, 

though, the reduction in discretization error due to finer mesh 

resolution is wasted because of the lack of fidelity to the 

original geometric model.  There are very few cases I have 

observed where very large, unstructured meshes have been 

constructed for solid geometry-based domains.  Examples 

where large discretized models are used for simple geometric 

domains include Direct Numerical Simulation for CFD and 

whole-earth models for weather modeling.  In these cases, 

though, the geometric domain is trivial and not represented in 

a CAD system. 

Removal of detail from a geometric model is necessary 

before a coarse mesh (i.e. a mesh with characteristic size 

much greater than the smallest model feature) can be 

generated with most meshing systems.  However, as the mesh 

resolution increases, the geometric detail should also be re-

introduced, since its resolution will be possible with the finer 

mesh.  Obviously, this may be problematic without automatic 

meshing algorithms, e.g. for hexahedral meshes.  However, 

even for tetrahedral meshes, it may be argued that this 

approach may perform better than post-meshing detail 

removal, as in this case it would not be necessary to always 

resolve the smallest details in the original model.  Indeed, 

some proponents of post-meshing detail removal are starting 

to deliver a-priori detail removal capabilities as well [13].  I 

speculate that such “lazy detail resolution” will become more 

important as adaptive mesh refinement becomes more 

commonplace in large FEA applications. 

3.2 Simplify meshing at the cost of analysis  

There have been times when both THEX-type meshes and 

stair-step meshes have been demonstrated as a viable 

alternative to all-hexahedral meshes, when they actually were 

not viable.  On the other hand, I know of no theoretical or 

empirical published results showing whether or why THEX 

meshes perform poorly.  Indeed, there is at least one case 

where these meshes have been used as part of an award-

winning analysis effort on Teraflop-class computers [14].  

We often become so polarized on a given issue that we fail to 

even consider the possible domains of applicability in a 

rigorous fashion. 

There is no better example of this issue than the still-

unresolved hex versus tet debate.  There has been some work 

on the theoretical aspects of this problem [16], and some 

indication that analysts are beginning to consider using 

tetrahedral meshes where in the past this may not have been 

considered for cultural reasons.  However, this issue is far 

from resolved, and will require both theoretical and empirical 

work to answer remaining questions. 

3.3 Quote time to mesh without accounting 

for related work 

Continued delivery of vertically-integrated commercial CAE 

applications has helped raise the level of awareness on the 

issue of overall time to analysis, and progress is being made 

to address this issue in the national lab context as well.  Also, 

there have been good examples of constrained design-

analysis systems which are very effective within their 

application domain [15].  Therefore, progress is being made 

at addressing the overall time to solution as well as making 

use of special-purpose algorithms to solve niche (but 

important) applications.   

3.4 Use examples which appear more 

complicated than they are 

This issue will never go away entirely, and one could argue 

that there is merit in showing the upper bound of capability 

when reporting on a given meshing algorithm or technique.  



Another way to address this issue is by developing suites of 

test problems on which algorithms can be compared.  One 

such effort is described later in this paper. 

A corollary to this issue is models which are much more 

difficult to mesh than they appear.  One such model is shown 

in Figure 2; part of the difficulty with this model is the 

proximity of surface boundaries when surfaces through the 

sweep are projected to a common plane.  Other examples 

include models with large features in close proximity to each 

other (which show small characteristic size in the absence of 

features anywhere near that size) and models with details 

(often translation artifacts) too small to see visually. 

 

3.5 Obscure important details about the 

model 

Modeling non-conforming interfaces has received attention 

relatively recently, and is sometimes done in practice using 

“tied contact” surfaces.  Unfortunately, results have not been 

encouraging, and the tied contact technique is not often used 

in practice.  One bright spot in the area of non-conforming 

interfaces is the use of embedded boundary techniques in 

CFD analysis [20]; in certain cases, it may be worth 

exploring these techniques for application to FEA.  

3.6 Describe 2D algorithm assuming easy 

extension to 3D 

Working in two dimensions can be an important part of 

developing robust 3D meshing algorithms.  However, the 

literature is full of cases where 3D turns out to be far more 

difficult than the analogous 2D algorithm.  For example, pure 

Delaunay-based triangulation has provable quality bounds in 

two dimensions which do not apply in three dimensions; 

provable-quality tetrahedral meshing which also works in 

practice has only recently been found [13].  Likewise, there 

are many algorithms which work rather well in the plane (i.e. 

two topological dimensions) but which perform poorly in 3D 

space.  Examples include intersection detection in advancing-

front surface meshing [6], and winding number-based inside-

outside checks[7].   

A more current example of the difficulty of extending 

algorithms to three dimensions is the lack of a robust 3D all-

hexahedral meshing algorithm, almost fifteen years after a 

robust all-quadrilateral algorithm was reported [17].  In 

particular, direct extension of the algorithm to three 

dimensions was quite unsuccessful [18].  In this case, it is the 

complexity added by the third topological dimension which 

makes the problem much more difficult. 

In all these cases, adding a third dimension, either geometric 

or topological, can render inapplicable the theoretical or 

heuristic foundations of a 2D algorithm.  In my experience, 

extending to that third dimension is rarely trivial. 

3.7 Describe “automatic” algorithm which 

uses arbitrary tunable parameters  

A key measure of success is whether an algorithm can 

succeed the first time it is applied to a given model, with no 

manual adjustment of parameters.  While the use of 

adjustable parameters gives much-needed degrees of freedom 

for solving difficult problems, their use should be clearly 

described when reporting those solutions.  This is another 

case where having a standard set of test cases for mesh 

generation would be helpful. 

 

Figure 2: Model that’s surprisingly difficult to 
hex-mesh, due to parallel lines in projected 

cross -sections.  



3.8 Quote time to mesh, leaving out 

important details 

The proper conditions under which a benchmark is done will 

vary with the purposes of the benchmark.  If testing is being 

done to see how fast an expert can use a given tool, then it 

makes sense to perform the test using the most experienced 

person with that tool.  Great time savings can be obtained by 

constraining model variations to a small range of design 

parameters, and many good simulation tools have been 

developed under these conditions.  However, in all cases, the 

conditions imposed by these tests should be clearly stated in 

benchmark reports. 

3.9 Mesh single-region models 

Simulation models are being constructed with increasing 

fidelity to the as-designed systems, which are often multi-part 

models.  Furthermore, current hexahedral meshing 

approaches require decomposition to reduce general parts to 

more primitive shapes.  These models have the same 

characteristics as multi-part models coming from design 

systems.  This is not likely to change even after a robust all-

hexahedral meshing algorithm is found, due to the inherent 

structure in a hexahedral mesh and the desire to match that to 

the structure of the domain. 

Meshing multi-region models can be significantly more 

difficult, because of the coupling introduced by mesh 

matching on the interfaces.   Although there are certain 

analyses where single-region models are more common (e.g. 

CFD, structural optimization of single parts), mesh 

generation systems are evolving from niche products into 

packages applicable to a wider range of physics.  To be 

effective across a spectrum of analysis types (structural, 

thermal, etc.), a meshing algorithm should be able to handle 

multi-region models, and regions with pre-determined surface 

meshes. 

3.10 Use an approach which works by itself 

but breaks other parts of the process  

If mesh generation was the end of the process, we would 

have many more meshing algorithms to choose from, 

including all-hexahedral algorithms.  There are many 

approaches to all-hexahedral meshing or hex-dominant 

meshing which are sufficiently robust in the mesh generation 

stage.  The trouble is, the meshes they generate cannot be 

used by downstream analyses, or the analysis codes must be 

modified to handle these types of meshes. 

There are many examples of meshes like this.  Hex-dominant 

mesh generation is one approach, where hex elements are 

generated first in an advancing-front layer and tetrahedra 

used to close the mesh.  Although there are many meshing 

tools able to generate meshes like this[9][10], relatively few 

analysis codes can handle the resulting meshes, and therefore 

they have had little impact.   

Another example of this item is the use of tetrahedral meshes 

in cases where the analyst would prefer to use hexahedra.  

Although the mesh generation step is far easier with 

tetrahedra, there are cases where the analysis takes more time 

to obtain a given accuracy of results.  Likewise, some 

advocates of hexahedral meshing often assume the need for 

hexahedra without ever seriously questioning why they are 

desired.  In both these cases, a well-informed statement about 

why one element type was preferable over another might 

raise the level of dialog on this important issue. 

3.11 Report a single quality metric (or none), 

where several should be used 

There are almost as many mesh quality metrics as there are 

methods for generating the meshes, and some well-known 

metrics (e.g. positive scaled jacobian) which indicate 

necessary but not sufficient quality. However, there are often 

other factors which are necessary for a mesh to be of practical 

use.  For example, the shortest edge length in a mesh can 

severely limit the time step in explicit codes due to CFL 

conditions.   

Because of this, there is no single metric for describing a 

“good” mesh.  Rather, the most useful rule is to clearly state 

what the formulation of any quality metric used is (explicitly 

or by reference), as well as describing the actual quality data. 

Recent work has been done to unify quality metrics under a 

common mathematical framework which can also account for 

variations in the definition of an “ideal” element[11].  This 



research has already had an impact in how mesh quality is 

reported (the same author popularized the use of the scaled 

jacobian metric), and I encourage its use. 

3.12 Show surface mesh but not interior 

Showing only surface mesh, sometimes for a very carefully-

chosen region of a model, can make a mesh look much better 

than it is.  A scientist once related to me his experience 

evaluating a meshing tool in the following manner: 

“The mesh looked fine on the surface, but when I 

saw the interior I wanted to call 911” 

The only way to overcome this problem is to pay attention to 

quality metrics used to describe a mesh. 

4 GOT MESH? 

One recent effort to address some of the difficulties in 

assessing various meshing approaches is the construction of a 

web site for storing and accessing geometry and mesh 

models.  This web site, http://www.gotmesh.org, allows the 

download and upload of geometry and mesh models in 

various formats, along with numerical and graphical mesh 

quality data.  This web site allows the storage of mesh and 

geometry models in various formats (ACIS .sat, IGES, etc.), 

and the indication of relations between models, for example 

between a model decomposed for hex meshing and the 

original model it came from.  I hope that this web site will 

serve as a means of evaluating new meshing approaches, and 

encourage others to upload new models there when possible. 

5 SUMMARY 

In every technical field, there is a tendency to over-state the 

capabilities of the latest algorithms in the effort to cast that 

work in the “best possible light”.  Mesh generation is no 

different, and indeed, there are characteristics of this field 

which make it particularly susceptible to this practice.  The 

purpose of this paper is to highlight some of the methods 

used (inadvertently or not) to obscure rather than elucidate 

the true performance of various mesh generation techniques 

on real applications, while also discussing some of the real 

difficulties in many of these areas as applied to mesh 

generation. 
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